
Reduced modeling of impedance networks. Application to
supervision/diagnosis

Pierre-Alexandre Bliman∗ and Mohamad Safa

Abstract— Having especially in view application to fuel cell
systems, we study in this paper the reduced modeling of
impedance networks. The networks under study are constituted
by a set of approximately identical (sub-)cells, coupled by
series-parallel electrical links. In order to detect and diagnose
the appearance of disparities in the behavior of the latter
(coming, say, from aging or degradations), the description of
the electrical behavior of the whole system by a “mean cell”
is not sufficient. The main contribution of the paper is to
provide a more involved approximation of the global network
impedance function, including corrective terms characterizing
the dispersion with respect to the average behavior. It is then
natural an attempt to identify quantities able to describe the
average behavior and the dispersion, in order to use them
as alert data for supervision and diagnosis. As an illustrative
example, the corresponding identification problem for the
reduced model is studied in more details in the case where
the individual impedance functions are first-order transfers.

Keywords: Model/Controller reduction; Identification; En-
ergy systems

I. INTRODUCTION

Alternative solutions to produce energy in a clean and
efficient way are widely explored nowadays. Among them,
fuel cell systems and batteries are intensively developed, both
for stationary and mobile applications, as they allow for high-
power density energy storage. Their implementation requires
special care, and ensuring viability, energetic efficiency and
robustness under a variety of environmental conditions and
a wide operating range requires precise monitoring.
Impedance spectroscopy is a powerful method of charac-

terizing many of the electrical properties of materials and
their interfaces, and thus to study (natural or engineered)
systems whose operation relies on these properties. Basically,
it consists in applying electrical stimuli and recording the
induced current/tension relation. Impedance spectroscopy has
proved particularly useful for characterizing the behavior
of electrochemical power sources, which are the place of
strongly coupled chemical and electrical (and to a lesser ex-
tent mechanical and thermal) phenomena. It also yields other
areas of interest to the engineer, such as characterization of
materials, study of the corrosion and others [1], but also to
the clinician [3] or the microbiologist [8] with the study of
living cells.
Extensive work has been made to understand and to pro-

vide models of energy-conversion systems (see e.g. [4], [5]
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for fuel cell systems) as differential systems. The complexity
of such models range from 3D partial differential equations
involving multi-phases phenomena, interaction liquid/solid
and thermal effects, to simple models based on ordinary
differential equations (ODE). The latter are especially inter-
esting for the control scientist purposes, including the tasks
of supervision and diagnosis in which we are interested here.
Notice that these models, although usually nonlinear, may
be used to provide analytical expressions for the impedance
function (see below in Section II).
Usually, the ODE models end up with a vision “at the

cell level”: the description of the chemical reactions and
electrical phenomena involved is done under the assumption
that quantities such as concentrations of species, current
densities, temperatures or physical characteristics are ho-
mogeneous in the whole device. However, models resulting
from this point of view may be insufficient for supervision
and diagnosis purposes. Here, the underlying hypothesis is
that the failures we want to supervise appear locally in the
fuel cell system, due to modifications e.g. of the membrane
electrical, chemical or mechanical properties due to drying,
flooding, membrane poisoning, aging. . . So the degraded
modes are typically accompanied by a loss of homogeneity,
which can be reversible or not.
Having especially in mind the application to fuel cell

systems, our goal in this paper is to explore the issue of
reduced modeling of the impedance function of a series-
parallel network of cells. This structure is considered in order
to account for the disparities between different cells — the
latter being put electrically in series —, as well as for the
possible heterogeneities within the cells — giving rise to the
parallel aspect. The underlying hypothesis here is that loss of
synchronicity induces efficiency drop: this is of course this
last aspect which is ultimately of interest here.
Our contribution here is an attempt to describe the

impedance of a network of approximately identical cells
in a more precise way than the usual “mean cell” models,
without however changing drastically the complexity of the
model. Moreover, we exhibit new quantities to be used for
monitoring and diagnosis as a clue of efficiency loss. While
aimed preferentially at fuel cell systems, our study here stays
at an abstract level, as we’re only interested in the reduced
modeling aspects of an impedance network.
The paper is organized as follows. It is first shown in

Section II how a differential model yields, via harmonic
balance, to compute impedance function. The series-parallel
model of network we aim at studying is presented in Section
III. Based on an expansion procedure, the reduced impedance
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model is introduced in Section IV. Last, it is shown in Sec-
tion V how the previous computations lead to identification
of mean parameter values and to quantities characterizing
the dispersion of the latter, just like “variances” would. For
simplicity, the computations are conducted for an illustrative
example, while for real applications physical model should
be used. In agreement with the simplest impedance functions
encountered in practice [1], the class of first-order transfers
is considered here.

Notations. In the sequel, derivatives with respect to the
k-th component θk of the parameter vector θ is denoted
∂k, and second derivatives with respect to θk, θl: ∂kl. Thus,
the gradient (with respect to θ) of Z(θ; s) is the vector
∇Z(θ; s) = ∇θZ(θ; s) = (∂kZ(θ; s))k; and H(Z), the
Hessian of Z , is the matrix (∂klZ(θ; s))kl, ∂klZ

.
= ∂2Z(θ;s)

∂θk∂θl
.

II. IMPEDANCE OF ELEMENTARY CELL

The, possibly nonlinear, input/output behavior of any
elementary cell of the network is given by

ẋ = f(θ; x, u), y = g(θ; x, u) . (1)

Here as usual, u, x, y are respectively the input, state and
output variables. All are supposed finite-dimensional, and u

and y are moreover assumed scalar. As a matter of fact, u

will have in the sequel the meaning of a current, while y is
a measured potential. Last, θ is a vector of parameters, of
finite-dimension. Typically based on balance equations and
behavioral laws, f and g are considered here as known.
The most common and standard method in impedanceme-

try [1] consists in feeding (1) with sinusoidal monochromatic
inputs u = u0+u1 cosωt for various values of the frequency
ω. It is assumed that, after possible transients, the state
and output of system (1) oscillates periodically, at the same
frequency ω. This is indeed quite usually what happens
to stable systems under forced oscillations. For small u1,
or if the system has low-pass filter properties, the state x

and the output y have essentially the same form: x(t) ∼
x0 + x1 cos(ωt + ϕx) and y(t) ∼ y0 + y1 cos(ωt + ϕy).
The impedance is then the complex I/O gain at the

fundamental frequency ω. This is reminiscent of course of
harmonic balance method [2]. More precisely, according to
this method the coefficients are computed from:

x0
.
=

ω

2π

∫ 2π/ω

0

x(t).dt, x1e
jϕx

.
=

ω

π

∫ 2π/ω

0

x(t)eiωt.dt

and similarly for y0, y1 (as can be seen, second and higher
terms have been ignored). When |x1| � |x0|, which is
usually the case in impedancemetry, first-order expansion
shows that (3) holds. The first formula in (3) indicates how
to deduce the steady-state values of x0, and then of y0, from
u0; while the second one (in which the gradient with respect
to u and x are denoted by ∇u, ∇x) provides analytically the
value of the impedance.
Thus, one may consider at least formally, that from the

nonlinear model (1) can be deduced the impedance function
Z(θ; s) in (3) for an elementary cell.

III. MODELING A SERIES-PARALLEL NETWORK OF CELLS

We now present the complex network under study, which
is supposed to represent a whole fuel cell stack. The model
of the global impedance of the network is written Zmod(s)
and given by

Zmod(s) =
1

m

m∑
j=1

(
1

n

n∑
i=1

Z(θij ; s)
−1

)−1

(2)

see Figure 1. In this formula, the variable j allows to index
the different cells located in series electrically. We would
like to have the ability to describe also internal disparities in
the parameter distribution inside each cell of the stack. This
is why is introduced the variable i. Thus, each cell is seen
as a population of sub-cells put in parallel electrically.
Notice that in (2), θij is the vector of parameters corre-

sponding to the sub-celle i in the cell j. When needed, the
k-th component of this vector will be denoted θk,ij .

IV. AN EXPANSION-BASED FREQUENCY DOMAIN
REDUCED MODEL

A. The reduced model formula

We begin by presenting the formula of the reduced model,
in formula (4). The latter, corresponding to the complete
model of Figure 1, is shown on Figure 2.
Recall that H(Z)(θ) (resp. H(Z−1)(θ)) represents Hes-

sian matrix with respect to the parameter vector θ of Z(θ) =
Z(θ; s) (resp. of its inverse Z(θ)−1). By definition, in (4) θ̄

is defined as the mean-value of θ on the whole network, and
θ̄η is the mean-value of θ on the cell η. A crucial point is that
Zred(s) depends only upon some mean-values and variances
related to the distribution of the parameters θ, while Zmod(s)
was a function of the value of the parameters at every point
(in each sub-cell) of the network. In this sense, Zred(s) is
really a reduced model of Zmod(s).
It is evident from these formulas that, when the corrective

terms (bearing Hessians H(Z) and H(Z−1)) are null, then
the reduced impedance is just the impendance Z(θ̄; s) of the
mean-cell, corresponding to the average parameter values.

B. Relation with the exact model

The choice of the reduced model above comes from
expanding Z(θ; s) around the value of θ̄ in the expression of
the exact impedance function. The formal relation between
the global impedance and its approximation is provided now.

Proposition 1. Assume the function Z is analytic with
respect to θ. The functions Zmod(s) and Zred(s) are equal
up to moments of the form

∑
j

(∑
i

(θij − θ̄)p

)q

(θ̄j−θ̄)r, p, q, r ≥ 0, pq+r ≥ 3

We now illustrate the reduction procedure in a simple
illustrative example, that will be considered again latter.
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Z(θn2; s)

. . .

. . .

. . .

. . .

. . .

. . .

1st cell m-th cell

. . .Z(θi1; s)

Z(θn1; s)

Z(θ12; s) Z(θ1m; s)

Z(θim; s)

Z(θnm; s)

2nd cell

Z(θ11; s)

Z(θi2; s)

Fig. 1. The series-parallel network corresponding to Zmod(s) in (2).

Z(θ̄; s)

1

2m

m∑
j=1

(θ̄ − θ̄j)
TH(Z)(θ̄)(θ̄ − θ̄j)

⎛
⎝ 1

2mn

m∑
j=1

n∑
i=1

(θij − θ̄j)
TH(Z−1)(θ̄)(θij − θ̄j)

⎞
⎠
−1

Fig. 2. Principle of the reduced model (4) of (2). The approximate impedance is equal to the impedance of a sub-cell corresponding to the mean-value of
the parameters, in parallel and in series with two corrective terms. The latter depend upon momentums of second order characterizing the heterogeneities
in the parameter distribution, see formula (4).

f(θ; x0, u0) = 0, y0 = g(θ; x0, u0) (3a)

Z(θ; s)
.
=

y1e
jϕy

u1
= ∇xg(θ; x0, u0) (sI −∇xf(θ; x0, u0))

−1
∇uf(θ; x0, u0) + ∇ug(θ; x0, u0) . (3b)

Zred(s) =
1

2m

m∑
j=1

(θ̄ − θ̄j)
TH(Z)(θ̄)(θ̄ − θ̄j) + Z(θ̄; s)

⎛
⎝1 +

Z(θ̄; s)

2mn

m∑
j=1

n∑
i=1

(θij − θ̄j)
TH(Z−1)(θ̄)(θij − θ̄j)

⎞
⎠
−1

(4a)

θ̄j
.
=

1

n

n∑
i=1

θij , θ̄
.
=

1

m

m∑
j=1

θ̄j . (4b)

αkl
.
=

1

m

m∑
j=1

(θ̄k − θ̄k,j)(θ̄l − θ̄l,j), βkl
.
=

1

mn

m∑
j=1

n∑
i=1

(θk,ij − θ̄k,j)(θl,ij − θ̄l,j) (5a)

θ̄k,j
.
=

1

n

n∑
i=1

θk,ij , θ̄k
.
=

1

m

m∑
j=1

θ̄k,j , k, l = 1, 2, 3 . (5b)

Zred(s) =
θ̄2α33

s̃3
−

α23

s̃2
+

(θ̄1s̃ + θ̄2)
3

(θ̄2
1 + β11)s̃3 + 2(θ̄1θ̄2 + β12)s̃2 + (θ̄2

2 + β22 − 2θ̄2β13 + θ̄1β23)s̃ − (θ̄1θ̄2β33 + θ̄2β23)
(6)
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Fig. 3. Comparison between the exact impedance curves (in blue) and
the approximations obtained with the single (mean) cell model Z(θ̄; s) (in
green) and the complete reduced model (in red). For details, refer to Section
IV-B.

Example 1 (First-order impedance.). Consider the
impedance class corresponding to simple RC circuits, given
by the first-order transfers:

Z(θ, s)
.
= θ1 +

θ2

s + θ3
(7)

where θ3 > 0 (for stability reasons) and θ1, θ2 ≥ 0 (passiv-
ity). Here, the parameters θ are thus a priori chosen as a
set of variables allowing to represent first order impedance
functions. Generally speaking, the parameters can also be
chosen directly as physical quantities entering in an intricate
way in some of the coefficients of the impedance function.
For k, l = 1, 2, 3, consider the quantities defined in

(5). They are first and second order moments, depicting
preferability series or parallel heterogeneities. Computations
show that the impedance model given in (7) writes as in (6),
where s̃

.
= s + θ3 for brevity.

Figure 3 is computed for a “10×10 network” (that is:
m = n = 10), with θ1,ij = 9 ± 30%, θ2,ij = 6 ± 30%,
θ3,ij = 1± 30% and randomly generated variations. Figure
3 shows in the Nyquist plane the exact impedance curve (2)
(blue); the impedance curve obtained by use of the mean-
value term Z(θ̄; s) only (with the exact values θ̄; green); and
the complete reduced model impedance (4), which for 1st-
order sub-cell impedance reads as (6) (with the exact values
of θ̄, α, β; red). The approximation of Zmod(s) by Zred(s)
is rather sharp (the maximal error in real or imaginary part
is less than 10−2 in the whole frequency range), and always
much better than with the mean-value term only.

V. IDENTIFYING THE REDUCED MODEL

A. Methodology
One assumes that impendance spectroscopy measure-

ments are available, usually a finite number of points
Zmes(jω), ω ∈ Ω of the Nyquist plot. Our purpose is to
face the issue of identifying the mean parameter values θ̄,
together with the parameter dispersions given by α and β,

see (5). In view of (6), there are indeed only eleven scalar
parameters: θ̄1, θ̄2, θ̄3, α23, α33, β11, β12, β13, β22, β23, β33.
We propose an identification procedure in two steps.
• First, the measurements are used to fit optimally (in a

sense to be made precise) the parameters of an impedance
function chosen in an appropriate class. This issue — fitting
optimally some parametrized curve to measurements —
appeals to classical questions in identification and is not
specifically explored further here.
• The second step consists in considering the identification

of θ̄, α and β itself, that is the issue of existence and unique-
ness of values of these variables for which the corresponding
function Zred(s) equals the fitted curve. Of course, the choice
of the class of functions is made on the basis of the structure
of Zred(s), and thus ultimately upon the impedance model
at the (sub-)cell scale.
From now on, we consider rational impedance function,

by assuming that the (scalar) function Z writes as:

Z(θ; s)
.
=

n(θ; s)

d(θ; s)
(8)

where n(θ; s) and d(θ; s) are polynomial with respect to the
Laplace variable s.

B. Decoupling between α and β

Let us first state a technical result, whose proof is omitted.

Lemma 2. The Hessian H
(

n
d

)
of a ratio of functions n

d , is
equal to 1

dH(n) − n
d2 H(d) − 1

d2 (∇n · ∇dT + ∇d · ∇nT) +
2 n

d3∇d · ∇dT.

We can then deduce the following result.

Proposition 3. For Z as in (8), Zred(s) defined by (4) writes
as in (9).

Keeping in mind that the unknowns of the identification
problem are the vector of mean value parameters θ̄ and the
coefficients of α, β, one sees that the previous form is impor-
tant: for rational functions as in (8), the numerator depends
only upon θ̄ and α, while the denominator depends only
upon θ̄ and β. This property is exemplified and explained
now, based on Example 1.

Example 1 (continued). Reducing to common denominator,
(6) leads to: Zred(s) = n(s)

d(s) , with d(s)
.
= (θ̄2

1 + β11)s̃
3 +

2(θ̄1θ̄2+β12)s̃
2 +(θ̄2

2 +β22−2θ̄2β13 + θ̄1β23)s̃−(θ̄1θ̄2β33+
θ̄2β23) and n(s)

.
= (θ̄2α33−α23s̃) d(s)+ s̃3(θ̄1s̃+ θ̄2)

3. The
denominator of Zred(s) is a polynomial of degree deg d = 3
in s̃ = s+θ̄3 (and thus in s), and the numerator a polynomial
of degree deg n = 6. It thus seems reasonable to attempt to
identify its coefficients to a given expression of the form:

s̃6 + y1s̃
5 + y2s̃

4 + y3s̃
3 + y4s̃

2 + y5s̃ + y6

s̃3(x0s̃3 + x1s̃2 + x2s̃ + x3)
. (11)

Here the constants x0, x1, x2, x3 and y1, y2, y3, y4, y5, y6

are supposed to have been deduced from the impedance
spectroscopy measurements, as well as θ̄3, the triple root
of the denominator (recall that for simplicity the variable
s̃ = s + θ̄3 has been introduced in place of s). This stage is
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Zred(s) = n3

⎛
⎝n2 +

1

2

∑
k,l

βkl

{
n2∂kld − nd ∂kln − n (∂kd ∂ln + ∂kn ∂ld) + 2d ∂kn ∂ln

}⎞
⎠
−1

+
1

2

∑
k,l

αkl

{
1

d
∂kld −

n

d2
∂kld −

1

d2
(∂kd ∂ln + ∂kn ∂ld) + 2

n

d3
∂kd ∂ld

}
. (9)

⎛
⎝n2 +

1

2

∑
k,l

βkl

{
n2∂kld − nd ∂kln − n (∂kd ∂ln + ∂kn ∂ld) + 2d ∂kn ∂ln

}⎞
⎠ d(s)3 (10a)

n3 +
1

2

⎛
⎝n2 +

1

2

∑
k,l

βkl

{
n2∂kld − nd ∂kln − n (∂kd ∂ln + ∂kn ∂ld) + 2d ∂kn ∂ln

}⎞
⎠×

∑
k,l

αkl

{
d2 ∂kln − nd ∂kld − d (∂kd ∂ln + ∂kn ∂ld) + 2n ∂kd ∂ld

}
. (10b)

supposed to be the first step of the identification procedure
(see Section V-A).
Corresponding to the ten coefficients in (11), ten identities

may thus be deduced, rendering obvious the decoupling
property mentioned above. For the denominator:

1

θ̄1
+

β11

θ̄3
1

= x0 (12a)

2

(
1

θ̄1

θ̄2

θ̄1
+

β12

θ̄3
1

)
= x1 (12b)

1

θ̄1

(
θ̄2

θ̄1

)2

+
β22

θ̄3
1

− 2
θ̄2

θ̄1

β13

θ̄2
1

+
β23

θ̄2
1

= x2 (12c)

θ̄2

θ̄1

β33

θ̄1
+

θ̄2

θ̄1

β23

θ̄2
1

+ x3 = 0 , (12d)

and for the numerator:

3
θ̄2

θ̄1
= y1 (13a)

3

(
θ̄2

θ̄1

)2

−
α23

θ̄3
1

x0 = y2 (13b)
(

θ̄2

θ̄1

)3

+
θ̄2

θ̄1

α33

θ̄2
1

x0 −
α23

θ̄3
1

x1 = y3 (13c)

θ̄2

θ̄1

α33

θ̄2
1

x1 −
α23

θ̄3
1

x2 = y4 (13d)

θ̄2

θ̄1

α33

θ̄2
1

x2 −
α23

θ̄3
1

x3 = y5 (13e)

θ̄2

θ̄1

α33

θ̄2
1

x3 = y6 . (13f)

C. Remarks on the structure of the identification problem
Referring to (9), one sees clearly that, for the rational

impedance of the form (8), the expression of Zred(s) is
highly structured. The (common) denominator and the nu-
merator are given by formulas (10). The degree (in s) of the
former is at most equal to 4 deg d+2 deg n, and the degree of
the latter to deg n+2 max{deg n, deg d}. (Recall that we are

considering degrees with respect to s, while the derivatives
written with the symbol ∂ are achieved with respect to the
parameters.)
The first factor in the second term of the numerator comes

from the denominator: its coefficients can be considered as
known. Using this trick, one sees that the obtained equations
are indeed always linear with respect to α and β.
Concerning the issue of their under- or over-determination,

it does not seem evident to rule on in general. However,
the previous example shows a very particular additional
structure.

Example 1 (continued). Detailed computations show that
from the six numerator formulas in (13) are deduced the
following formulas

θ̄2

θ̄1
=

y1

3
(14a)

α33

θ̄2
1

=
3y6

x3y1
(14b)

α23

θ̄3
1

=
x2

x3

θ̄2

θ̄1

α33

θ̄2
1

−
y5

x3
=

x2y6

x2
3

−
y5

x3
. (14c)

as well as three compatibility relations
1

3
x2

3y
2
1 + x0x3y5 = x2

3y2 + x0x2y6 (15a)
1

27
x2

3y
3
1 + x0x3y6 + x1x3y5 = x2

3y3 + x1x2y6 (15b)

x1x3y6 + x2x3y5 = x2
3y4 + x2

2y6 (15c)

The violation of the latter (or the impossibility of finding
xr, yr in (11) nicely fitting experimental data and fulfilling
them) can be the mark that ‘something goes wrong’. Here,
they are integrated to the first step of the identification
procedure: one directly looks for xr, yr which better fit the
experimental data among those which fulfill the previous
algebraic constraints. However, the latter are nonlinear, and
generally speaking, this removes any guarantee that the
corresponding optimization problem is nicely solvable (in
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Quantities Exact values Values computed Relative errors
θ̄3 1.0757 1.0485 2.5%
θ̄2

θ̄1
0.6611 0.6758 2.2%

1

θ̄1
+

β11

θ̄3
1

0.1105 0.1119 1.3%

θ̄2

θ̄2
1

+
β12

θ̄3
1

0.0724 0.0763 5.4%

θ̄2
2

θ̄3
1

+
β22

θ̄3
1

− 2
θ̄2β13

θ̄3
1

+
β23

θ̄2
1

0.0495 0.0475 4.0%

β33

θ̄1
+

β23

θ̄2
1

0.0032 0.0039 22%

Fig. 4. Exact and computed values of six of the eight identifiable quantities.

particular, there is in general no guarantee at all on the
absence of local minima).
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Fig. 5. Comparison between the exact data and the identified impedance
curve.

Based on the data already used at the end of Section IV-B,
a comparison is provided in Figure 5 between the Nyquist
plot of the exact model (as in Figure 3; red), with the function
of type (11) (blue), where the xr, yr are chosen to minimize
the sum of Euclidian distances

∑
ω∈Ω

‖Zmes(jω)−Zred(jω)‖2

while fulfilling the compatibility relations (15). The set Ω is
the frequency set {10ω : ω = −2,−1.9,−1.8, . . . , 2.9, 3}.
Very good accordance is obtained.
The denominator (12) furnishes four identifiable quanti-

ties. Overall, eight quantities may be identified from the mea-
surements, namely: θ̄3,

θ̄2

θ̄1

, α33

θ̄2

1

, α23

θ̄3

1

, 1
θ̄1

+ β11

θ̄3

1

, θ̄2

θ̄2

1

+ β12

θ̄3

1

,
θ̄2

2

θ̄3

1

+
β22

θ̄3

1

− 2 θ̄2β13

θ̄3

1

+ β23

θ̄2

1

and β33

θ̄1

+ β23

θ̄2

1

.
However, the parameters θ̄, α, β themselves cannot be

identified, there remains under-determination.

D. Numerical application: identification for Example 1
The identification is conducted as presented above, on the

data already generated in Section IV-B, see Table 4. As can
be seen, the comparison between identified and exact values
is very good for five quantities. These preliminary results

show already the interest of the reduced modeling method.

Acknowledgements. The authors thank Michel Sorine and
Qinghua Zhang (INRIA), for valuable discussions.

VI. CONCLUSION
Reduced modeling of impedance network made up of

parallel/series coupling of almost identical sub-cells has been
studied. A method based on simple expansion formula is
proposed, and the reduced model is obtained as a paral-
lel/series assembly of three terms, a term corresponding to
a ‘mean cell’ behavior, and two terms taking account series,
respectively parallel, disparities in the sub-cell parameter
distribution. Based on identification of the reduced model,
the method, while still at an initial stage, may be used for
supervision/diagnosis.

REFERENCES
[1] E. Barsoukov, J. Ross Macdonald, Impedance Spectroscopy: Theory,

Experiment, and Applications, Wiley-Interscience, 2005
[2] A. Gelb, W.E. Vander Velde, Multiple-Input Describing Functions and

Nonlinear System Design, McGraw Hill, New York, 1968
[3] U.G. Kyle et al., Bioelectrical impedance analysis, part I: review of

principles and methods, Clinical Nutrition 23, 1226–1243, 2004
[4] J. Larminie, A. Dicks, Fuel Cell Systems Explained (2nd Edition),

John Wiley & Sons, 2003
[5] X. Li, Principles of Fuel Cells, Taylor & Francis, New York, 2006
[6] J.T. Pukrushpan, A.G. Stefanopoulou, H. Peng, Control of Fuel Cell

Power Systems: Principles, Modeling, Analysis and Feedback Design,
Series : Advances in Industrial Control, Springer, 2004

[7] D.F. Schanne, E. Ruiz-Ceretti, Impedance measurements in biological
cells, John Wiley & Sons, New York, 1978

[8] P. Silley, S. Forsythe, Impedance microbiology — a rapid change for
microbiologists, Journal of Applied Bacteriology, 80, 233-243, 1996

P. A. Bliman and M. Safa: Reduced Modeling of Impedance Networks. Application to Supervision/diagnosis  MoB13.1 

1022



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


